Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Food Frontiers ; 4(2):721-732, 2023.
Article in English | ProQuest Central | ID: covidwho-20238791

ABSTRACT

Foodstuff is a complex system that consists of a variety of nutrients. Protein is the basis of human life and health, which is made up of amino acids combined in different proportional orders. Polyphenols are a class of small molecule active substances with strong pro-life health effects. It has been found that protein and polyphenols can be combined by covalent and non-covalent interactions to form complex delivery carriers. The interaction between the two can effectively improve the physiological activities of proteins and enhance the bio-accessibility of polyphenols. With the maturation of ultrasound technology, several studies have shown that ultrasound can promote the production of protein−polyphenol complexes. To promote the study of protein–polyphenol interactions in foodstuff by ultrasound technology, the preparation methods of protein−polyphenol complexes, the effects of ultrasound on complex generation, and analytical methods were systematically summarized based on an extensive literature review, and further research directions were proposed. It provides the reference for the ultrasound study of protein−polyphenol complexes.

2.
Polycyclic Aromatic Compounds ; 43(4):3024-3050, 2023.
Article in English | ProQuest Central | ID: covidwho-2312625

ABSTRACT

Two coordination complexes, a cobalt(II) complex tris(1,10-phenanthroline)-cobalt perchlorate hydrate, [Co(phen)3]·(ClO4)2·H2O(1), and a copper(II) complex tris(1,10-phenanthroline)-copper perchlorate 4-bromo-2-{[(naphthalene-1-yl)imino]methyl}phenol hydrate, [Cu(phen)3]·(ClO4)2·HL·[O] (2), [where, phen = 1,10-phenathroline as aromatic heterocyclic ligand, HL = 4-bromo-2-((Z)-(naphthalene-4-ylimino) methyl) phenol] have been synthesized and structurally characterized. Single crystal X-ray analysis of both complexes has revealed the presence of a distorted octahedral geometry around cobalt(II) and copper(II) ions. density functional theory (DFT)-based quantum chemical calculations were performed on the cationic complex [Co(phen)3]2+ and copper(II) complex [Cu(phen)3]2+ to get the structure property relationship. Hirshfeld surface and 2-D fingerprint plots have been explored in the crystal structure of both the metal complexes. To find potential SARS-CoV-2 drug candidates, both the complexes were subjected to molecular docking calculations with SARS-CoV-2 virus (PDB ID: 7BQY and 7C2Q). We have found stable docked structures where docked metal chelates could readily bound to the SARS-CoV-2 Mpro. The molecular docking calculations of the complex (1) into the 7C2Q-main protease of SARS-CoV-2 virus revealed the binding energy of −9.4 kcal/mol with a good inhibition constant of 1.834 µM, while complex (2) exhibited the binding energy of −9.0 kcal/mol, and the inhibition constant of 1.365 µM at the inhibition binding site of receptor protein. Overall, our in silico studies explored the potential role of cobalt(II) complex (1), and copper(II) complex (2) complex as the viable and alternative therapeutic solution for SARS-CoV-2.

3.
Horticulturae ; 9(2):226, 2023.
Article in English | ProQuest Central | ID: covidwho-2268858

ABSTRACT

The nutritional quality and biomass of various sprouts can be enhanced by Zn and red-blue light, especially the Brassica sprouts. However, the combined effects of this two on sprouts are rarely reported. In this study, different Zn concentrations (0, 1.74, 3.48, 10.43 and 17.39 mM) were combined with two ratios of red-blue light-emitting diodes (LEDs) (R: B = 1:2, 1R2B;R: B = 2:1, 2R1B, at 70 μmol m−2 s−1 PPFD, 14 h/10 h, light/dark) to investigate their mutual effects on the growth, mineral elements, and nutritional quality in flowering Chinese cabbage sprouts (FCCS). Fresh weight, dry weight, contents of organic Zn, soluble sugar, vitamin C, total flavonoids, total polyphenol, FRAP (ferric ion-reducing antioxidant power) and DPPH (radical inhibition percentage of 1,1-diphenyl-2-picrylhydrazyl) were significantly increased by Zn supplement (10.43 and 17.39 mM) and 2R1B, while hypocotyl length and moisture content were decreased remarkably by Zn supplement. Total glucosinolates contents in the sprouts increased dramatically under 2R1B compared with 1R2B, while photosynthetic pigments contents decreased. Heat map and principal component analysis showed that 2R1B + 17.39 mM Zn was the optimal treatment for the accumulation of biomass and health-promoting compound in FCCS, suggesting that a suitable combination of light quality and Zn supplement might be beneficial to zinc-biofortified FCCS production.

4.
Bioinformation ; 19(2):178, 2023.
Article in English | ProQuest Central | ID: covidwho-2263680

ABSTRACT

Quercetin belongs to the flavonoid family, which is one of the most frequent types of plant phenolics. This flavonoid compound is a natural substance having a number of pharmacological effects, including anticancer and antioxidant capabilities, as well as being a strong inhibitor of various toxicologically important enzymes. We discuss the potential of newly recently synthesized quercetin-based derivatives to inhibit SARS-CoV-2 protein. ADMET analysis indicated that all of the studied compounds had low toxicities and good absorption and solubility properties. The molecular docking results revealed that the propensity for binding to SARS-CoV-2 main protease is extraordinary. The results are remarkable not only for the binding energy values, which outperform several compounds in prior studies, but also for the number of hydrogen bonds formed. Compound 7a was capable of forming 10 strong hydrogen bonds as well as interact to the protein receptor with a binding energy of -7.79 kcal/mol. Therefore, these compounds should be highlighted in further experimental studies in the context of treating SARS-CoV-2 infection and its effects.

5.
Drying Technology ; 41(2):322-334, 2023.
Article in English | Scopus | ID: covidwho-2245476

ABSTRACT

Currently, an estimated 20% of the population in Sub-Saharan Africa is food insecure with the incidence of hunger and malnutrition still rising. This trend is amplified by the socio-economic consequences of the COVID-19 pandemic. In contrast, more than a third of the harvestable perishable produce is lost due to a lack of preservation or failure to utilize preservation as is the case for underutilized crops (UCs). Moreover, some of the preservation techniques utilized are poor, leading to the deterioration of food quality, especially the micronutrients. In this study, we thus exemplarily investigated the impact of different drying settings on the quality of two highly nutritious UCs, namely cocoyam and orange-flesh sweet potato (OFSP) (40, 60, and 80 °C for cocoyam and 40, 50, 60, and 70 °C for OFSP) to deduce the optimum quality retention and further develop a theoretical design of processing units and processing guidelines for decentralized food processing. Drying cocoyam at 80 °C and OFSP at 60 °C, respectively resulted in a relatively shorter drying time (135 and 210 min), a lower total color difference (2.29 and 11.49-13.92), greater retentions for total phenolics (0.43 mg GAE/100 gDM and 155.0-186.5 mg GAE/100 gDM), total flavonoid (128 mg catechin/100 gDM and 79.5-81.7 mg catechin/100 gDM) and total antioxidant activity (80.85% RSA and 322.58-334.67 mg AAE/100 gDM), respectively for cocoyam and OFSP. The β-carotene, ascorbic acid and vitamin A activity per 100 gDM of the OFSP flours ranged between 6.91- 9.53 mg, 25.90 − 35.72 mg, and 0.53 − 0.73 mg RAE, respectively. © 2022 The Author(s). Published with license by Taylor and Francis Group, LLC.

6.
Asian Journal of Research in Pharmaceutical Science ; 12(4), 2022.
Article in English | ProQuest Central | ID: covidwho-2219027

ABSTRACT

[...]this idea proposes that CD-NS details are secure and successful in expelling harmful atoms from the body. Understanding who is habitually dialyzed for the urea clearance is lower by six times when analyzing its strength with a well-being person. [...]urinary toxins aggregate into the body due to inadequate kidney function. The most beneficial system is found to be CD-based. Because CD-based systems for many years have been used as pharmaceutical excipients and are natural biocompatible polymers16,17,18. [...]it produces a rigid structure that shapes the nanoparticles54.

7.
IOP Conference Series. Earth and Environmental Science ; 1107(1):012120, 2022.
Article in English | ProQuest Central | ID: covidwho-2160867

ABSTRACT

The main food consumption of farming families is an important concern during the pandemic. Farmers in West Nusa Tenggara (WNT) survive with the availability of rice to support household health and food security during the pandemic. In addition to its nutritional content, rice also contains phenolic compounds and has antioxidant activity. This study aims are to measure the frequency of rice consumption, food variety, varieties of rice consumed daily during the pandemic in WNT, as well as the antioxidant properties of several rice varieties grown in WNT. This study was conducted from September 2020 to June 2021 in East Lombok, Sumbawa and Bima Regencies, WNT Province, Indonesia using a survey approach. The data collection techniques were observation, Focus Group Discussion, recording, interviews with 74 respondents with a semi-structured questionnaire and study literature related to the nutritional content and bioactive compound of the rice. Quantitative data was tabulated to determine the frequency and average then descriptively analyzed, while qualitative data was thematically analysed. The most consumed rice varieties are seen from the production data of seed breeders in the WNT region, the phenolic content was determined using Folin–Ciocalteu, antioxidant activity was examined using DPPH assay. The result showed that the highest portion of food consumed by farmer households in WNT is rice. The most variety of rice produced by breeders is the Inpari 32 variety. There are about 97% of farmers consume rice for 3 times a day, while 3% of the remaining consume 2 times a day of rice. Food variety includes 7.9% vegetable-rice and 92.1% rice-vegetables-meat protein. The results of the analysis of antioxidant properties and phenolic content in rice is depending on the variety. The antioxidant properties of the Jeliteng, Baroma, Pamelen, Nutrizinc and Inpari 32 rice varieties were 44.85±0.51%, 9.87±1.55%, 9.96±1.22%, 9.75±1.09%, and 14.305±1.24%, respectively, while the phenolic contents were 9.76±0.09, 4.23±0.03, 4.48±0.02, 4.64± 0.07, 4.58±0.42 mg GAE/g dryrice extract, respectively. The results of this study indicate that rice has been used as one of antioxidants source for farming families during the pandemic.

8.
Sustainability ; 14(17):10862, 2022.
Article in English | ProQuest Central | ID: covidwho-2024206

ABSTRACT

The waste generated by small-scale ultra-fresh juice producers, such as bistros and restaurants, has been little studied so far, mainly because it is unevenly distributed and dissipated in the economic ecosystem and would require high costs associated with transportation and subsequent recovery of bio composites. The present article seeks to offer solutions by providing sustainable methods to reduce their waste losses to a minimum and transform them into valuable products, with affordable equipment and techniques. The study focuses on the preliminary phase of quantitative analysis of fruit and vegetable by-products generated on a small scale, the results showing a mean 55% productivity in fresh juices. Due to the high amount of remnant water content in waste, a new process of mechanically pressing the resulting squeezed pulp was introduced, generating an additional yield in juice, ranging from 3.98 to 51.4%. Due to the rising trend in healthier lifestyle, the by-products were frozen or airdried for conservation in each of the processing stages, and the total phenolic compounds and antioxidant activity were analyzed in order to assess the traceability of these bioactive compounds to help maximize their transfer into future final products. The polyphenols transferred into by-products varied between 7 and 23% in pulps and between 6 and 20% in flours. The highest DPPH potential was found in flours, up to three-fold in comparison with the raw material, but the high dry substance content must be accounted for. The results highlight the potential of reusing the processing waste as a reliable source of bioactive compounds.

9.
Applied Sciences ; 12(16):8361, 2022.
Article in English | ProQuest Central | ID: covidwho-2023103

ABSTRACT

In the current market, there is a growing interest in traditional herbal nutraceuticals. Therefore, herbal formulations have re-emerged as products with sought-after nutraceutical and disease-preventing properties. The health-promoting effects of herbal bioactives are attributed to the active phytoconstituents of these plants. Thus, the aim of the present study was to evaluate the putative nutraceutical effectiveness of the preparations of ten herbs (chamomile, purple coneflower, lemon verbena, pennyroyal, spearmint, oregano, marjoram, headed savory, sea buckthorn, and St. John’s wort) by combining in silico techniques and LC-MS/MS analysis. The binding potential of the selected phenolic compounds, according to literature and web databases, was investigated by using molecular target prediction tools. Aldose reductase (AR), an enzyme of polyol pathway which is related to hyperglycemic-induced pathologies, emerged as the most promising molecular target. The molecular docking results showed that rosmarinic acid, caftaric acid, naringenin, and quercetin presented the highest binding affinity. In a further step, the phytochemical profile of the examined infusions, obtained by LC-MS/MS analysis, revealed that the abovementioned compounds were present, mainly in the herbs of the Lamiaceae family, designating headed savory as the herbal infusion with possible significant inhibitory activity against AR.

10.
Molecules ; 27(17)2022 Aug 25.
Article in English | MEDLINE | ID: covidwho-2023943

ABSTRACT

Considering the vast cultural and traditional heritage of the use of aromatic herbs and wildflowers for the treatment of light medical conditions in the Balkans, a comparison of the antioxidant capacity of wildflowers extracts from Herzegovina was studied using both cyclic voltammetry and spectrophotometry. The cyclic voltammograms taken in the potential range between 0 V and 800 mV and scan rate of 100 mV s-1 were used for the quantification of the electrochemical properties of polyphenols present in four aqueous plant extracts. Antioxidant capacity expressed as mmoL of gallic acid equivalents per gram of dried weight of the sample (mmoL GAE g-1 dw) was deduced from the area below the major anodic peaks (Q400 pH 6.0, Q500 pH 4.7, Q600 pH 3.6). The results of electrochemical measurements suggest that the major contributors of antioxidant properties of examined plants are polyphenolic compounds that contain ortho-dihydroxy-phenol or gallate groups. Using Ferric reducing-antioxidant power (FRAP) and 2,2'-azino-bis spectrophotometric methods (3-ethylbenzthiazoline-6-sulphonic acid) radical cation-scavenging activity (ABTS) additionally determined antioxidant capacity. The FRAP results ranged from 2.9702-9.9418 mmoL Fe/g dw, while the results for ABTS assays expressed as Trolox equivalents (TE) ranged from 14.1842-42.6217 mmoL TE/g dw. The Folin-Ciocalteu procedure was applied to determine the total phenolics content (TP). The TP content expressed as Gallic acid equivalents (GAE) ranged from 6.0343-9.472 mmoL GAE/g dw. The measurements of total flavonoid (TF) and total condensed tannin (TT) contents were also performed to obtain a broader polyphenolic profile of tested plant materials. Origanum vulgare L. scored the highest on each test, with the exception of TT content, followed by the Mentha × piperita L., Artemisia annua L., and Artemisia absinthium L., respectively. The highest TT content, expressed as mg of (-)catechin equivalents per gram of dried weight of sample (mg CE/g dw), was achieved with A. absinthium extract (119.230 mg CE/g dw) followed by O. vulgare (90.384 mg CE/g dw), A. annua (86.538 mg CE/g dw) and M. piperita (69.231 mg CE/g dw), respectively. In addition, a very good correlation between electrochemical and spectroscopic methods was achieved.


Subject(s)
Antioxidants , Plant Extracts , Antioxidants/chemistry , Flavonoids/chemistry , Gallic Acid/analysis , Humans , Phenols/chemistry , Plant Extracts/chemistry , Polyphenols/analysis
11.
Asian Journal of Organic Chemistry ; : 40, 2022.
Article in English | Web of Science | ID: covidwho-1976683

ABSTRACT

Out of the many heterocycles that exhibit pharmaceutical and therapeutic properties, benzofurans remain the most eye-catching to scientists ever since their discovery. From being present in natural products to synthetic analogs they show diverse biological properties which are used to treat various diseases. Interestingly, some of the benzofuran hybrids were docked against COVID-19 Main Protease and it showed appealing results. Apart from medicinal properties it also exhibits some non-drug applications. The structure activity relationship of benzofuran derivatives in many infections draws attention to the extent where drugs can be produced in a short time span which highlights their significance in medicinal chemistry. There are considerable reaction schemes to synthesize this moiety either simple one pot reactions or multistep. Here, we emphasize on the chemistry of benzofurans, synthesis and its derivatives in the recent years, some of which show notable anti-tumor, anti-fungal, anti-mycobacterial and anti-oxidant activities.

12.
Antioxidants (Basel) ; 11(7)2022 Jun 22.
Article in English | MEDLINE | ID: covidwho-1963676

ABSTRACT

Nowadays, food fortification with bioactive compounds deriving from agri-food waste is of great interest all over the world. In this work, apple pomace (AP), the most abundant by-product of apple juice manufacturing, was characterised by chemical, chromatographic and spectrophotometric analyses. AP showed valuable antioxidant activity, due to the presence of phenolic compounds (8.56 mg gallic acid equivalents/g), including quercetin-3-O-galactoside, quercetin-3-O-arabinofuranoside, and phloridzin. Dried AP, at 7% and 14%, was added to pork meat to produce Italian salami, then subjected to 25 days of ripening. Physicochemical, colorimetric and microbiological analyses were carried out at days 0, 5, 11, 19 and 25, while nutritional and sensory evaluations were performed at the end of the ripening. The overall acceptability was slightly higher for 7% AP compared to 14% AP sample, and generally the replacement of a percentage of meat with apple pomace allowed the production of salami with sensory properties comparable to those obtained with classic recipes. The improved fibre and phenol content, together with the lower fat and calories, represent the most interesting characteristics of fortified salami. The results confirm that the addition of AP represents a valid approach to adding healthy compounds to salami.

13.
IOP Conference Series. Earth and Environmental Science ; 977(1):012034, 2022.
Article in English | ProQuest Central | ID: covidwho-1948112

ABSTRACT

Wheat and rice are plants that contain many health benefits, such as chlorophyll, protein and phenolic compounds, which are very suitable for consumption during the current COVID-19 pandemic. This study aims to observe the growth response of wheat and rice with various types of growing media. The use of the right planting media is expected to provide good content for wheat and rice plants so that they can be used as health drinks that are good for consumption. This study used a factorial completely randomized design using two factors, where : factor I = plant species with T1 (wheat) and T2 (rice) and factor II = type of growing media with P0 (top soil), P1 (top soil: husk charcoal). ) (1:1), P2 (top soil:cocopeat) (1:1), P3 (top soil:sawdust) (1:1) and P4 (top soil:husk charcoal:cocopeat:sawdust) (1:1:1:1). The results of this study indicate that the highest plant height data was obtained from rice plants with an average top soil planting medium of 18.13 cm. The highest protein content was found in wheat with top soil growing media: sawdust with a yield of 2.20 L/g. So it can be said that wheat can be used as a health drink because it contains high protein.

14.
Foods ; 11(10):1452, 2022.
Article in English | ProQuest Central | ID: covidwho-1871540

ABSTRACT

Flavonoids are significant antioxidant and anti-inflammatory agents and have multiple potential health applications. Moringa oleifera is globally recognized for its nutritional and pharmacological properties, correlated to the high flavonoid content in its leaves. However, the bioactive compounds found in plants may vary according to the cultivation, origin, season, and extraction process used, making it difficult to extract reliable raw material. Hence, this study aimed to standardize the best cultivation and harvest season in Brazil and the best extraction process conditions to obtain a flavonoid-rich extract from M. oleifera as a final product. Firstly, ultrasound-assisted extraction (UAE) was optimized to reach the highest flavonoid content by three-level factorial planning and response surface methodology (RSM). The optimal cultivation condition was mineral soil fertilizer in the drought season, and the optimized extraction was with 80% ethanol and 13.4 min of extraction time. The flavonoid-rich extract was safe and significantly decreased reactive oxygen species (ROS) and nitric oxide (NO) in LPS-treated RAW 264.7 cells. Lastly, the major flavonoids characterized by HPLC-ESI-QTRAP-MS/MS were compounds derived from apigenin, quercetin, and kaempferol glycosides. The results confirmed that it was possible to standardize the flavonoid-rich extract leading to a standardized and reliable raw material extracted from M. oleifera leaves.

15.
International Journal of Microbiology ; 2022, 2022.
Article in English | ProQuest Central | ID: covidwho-1871145

ABSTRACT

The antimicrobial potential of Aspergillus sp., isolated from the Amazon biome, which is stored at the Amazon Fungi Collection-CFAM at ILMD/FIOCRUZ, was evaluated. The fungal culture was cultivated in yeast extract agar and sucrose (YES) for cold extraction of the biocompounds in ethyl acetate at 28 °C for 7 days in a BOD type incubator. The obtained extract was evaluated for its antimicrobial activity against Candida albicans and Gram-positive and negative bacteria by the “cup plate” method and the determination of the minimum inhibitory concentration (MIC) by the broth microdilution method. The extract was subjected to thin layer chromatography (TLC) and fractionated by open and semipreparative column chromatography. The fractions of interest had their chemical constituents elucidated by nuclear magnetic resonance and mass spectrometry. The elucidated molecule was evaluated for cytotoxicity against the human fibroblast strain (MRC5). The extract presented inhibitory activity against both Gram-positive and negative bacteria, with the range of inhibition halos from 5.3 to 14 mm in diameter and an MIC ranging from 500 to 15.6 μg/mL. Seventy-one fractions were collected and TLC analysis suggested the presence of substances with double bond groups: coumarins, flavonoids, phenolic, alkaloids, and terpenes. NMR and MS analyses demonstrated that the isolated molecule was kojic acid. The results of the cytotoxicity test showed that MRC5 cells presented viability at concentrations from 500 to 7.81 μg/mL. The kojic acid molecule of Aspergillus sp., with antibacterial activity and moderate toxicity at the concentrations tested, is a promising prototype of an alternative active principle of an antimicrobial drug.

16.
Antioxidants ; 11(5):994, 2022.
Article in English | ProQuest Central | ID: covidwho-1871005

ABSTRACT

During the last decades, the demand for processes developed according to the Circular Economy Principles has increased, searching for an alternative life for wastes. For this purpose, a one-pot green approach is exploited during this work to synthesize gold nanoparticles (AuNPs) by using grape pomace waste from Vitis vinifera. A raw aqueous extract of grape seeds, skin, and stems is used for AuNPs synthesis. UV-Vis, XPS, SEM, and ATR-FTIR spectroscopies demonstrate the main role of the extract’s polyphenolic components in stabilizing nanoparticles. XRD, DLS, and Zeta Potential analyses were used to characterize AuNPs. Moreover, the ionic strength, pH, and temperature role was investigated through the Surface Plasmon Resonance (SPR) band observation to assess AuNPs’ stability and photostability. For foreseeing the as-synthesized AuNPs’ potential use in cosmetic and biomedical fields as multifunctional platforms, their antioxidant, and skin-lightening properties were tested, together with their sunscreen ability. A preliminary in-vitro evaluation is reported about the AuNPs’ cytoprotective effects against H2O2 oxidative stress-induced in normal human dermal fibroblasts. Briefly, the possibility of reusing the grape pomace waste after the AuNPs synthesis as an adsorbent for the efficient removal of emergent contaminants is preliminarily discussed in the paper, further valorizing the use of waste according to a bio circular approach.

17.
Molecules ; 27(9):2907, 2022.
Article in English | ProQuest Central | ID: covidwho-1842906

ABSTRACT

This study aimed to evaluate the phenolic profile and biological activity of the extracts from the leaves and fruits of Cotoneaster nebrodensis and Cotoneaster roseus. Considering that miscellaneous species of Cotoneaster are thought to be healing in traditional Asian medicine, we assumed that this uninvestigated species may reveal significant therapeutic properties. Here, we report the simultaneous assessment of chemical composition as well as biological activities (antioxidant, anti-inflammatory, antibacterial, and cytotoxic properties) of tested species. Complementary LC-MS analysis revealed that polyphenols (especially flavonoids and proanthocyanidins) are the overriding phytochemicals with the greatest significance in tested biological activities. In vitro chemical tests considering biological activities revealed that obtained results showed different values depending on concentration, extraction solvent as well as phenolic content. Biological assays demonstrated that the investigated extracts possessed antibacterial properties and were not cytotoxic toward normal skin fibroblasts. Given the obtained results, we concluded that knowledge of the chemical composition and biological activities of investigated species are important to achieve a better understanding of the utilization of these plants in traditional medicine and be useful for further research in their application to treat various diseases, such as skin disorders.

18.
Journal of Drug Delivery and Therapeutics ; 12(2):87-99, 2022.
Article in English | CAB Abstracts | ID: covidwho-1841785

ABSTRACT

Plant Based Natural Products (PBNPs) have been subject of interest since ancient time due to their use in food, industrial and biomedical applications. Research attention has further augmented to explore their phytochemical composition, properties, and potential application in the post-COVID era. In the present study phytochemical screening has been carried out with Methanolic Leaf Extracts of Moringa oleifera (MLEMO) followed by Gas Chromatography-Mass Spectrometry (GCMS) analysis. Phytochemical analysis of MLEMO revealed the presence of Alkaloids, Carbohydrates, Coumarins, Flavonoids, Glycosides, Phenol, Proteins, Quinones, Saponins, Steroids, Tannins and Terpenoids. Further, GCMS analysis revealed the presence of 41 compounds of which Dihydroxyacetone;Monomethyl malonate;4H-Pyran-4-one,2,3-dihydro- 3,5-dihydroxy-6-methyl;1,3-Propanediol, 2-ethyl-2-(hydroxymethyl);Propanoic acid, 2- methyl-, octyl ester;3-Deoxy-d-mannoic lactone;Sorbitol;Inositol;Cyclohexanemethanol, alpha-methyl-4-(1-methylethyl), Hexadecanoic acid, Methyl palmitate;n-Hexadecanoic acid (Palmitic acid);9-Octadecenoic acid, methyl ester;Phytol;9,12,15-Octadecatrienoic acid;Octadecanoic acid;9-Octadecenamide were prominent. Most of the compounds in the list are bioactive and possess medicinal properties that are expected to serve as a baseline lead for the development of therapeutic agents.

19.
Foods ; 11(9):1177, 2022.
Article in English | ProQuest Central | ID: covidwho-1837981

ABSTRACT

The purpose of this research was to develop formulations of chewing candies (CCs) in a sustainable manner by using berry by-products in combination with antimicrobial lactic acid bacteria (LAB) strains. To implement this aim, the optimal quantities of by-products from lyophilised raspberry (Rasp) and blackcurrant (Bcur) from the juice production industry were selected. Prior to use, Lactiplantibacillus plantarum LUHS135, Liquorilactobacillus uvarum LUHS245, Lacticaseibacillus paracasei LUHS244, and Pediococcus acidilactici LUHS29 strains were multiplied in a dairy industry by-product—milk permeate (MP). The antimicrobial activity of the selected ingredients (berry by-products and LAB) was evaluated. Two texture-forming agents were tested for the CC formulations: gelatin (Gl) and agar (Ag). In addition, sugar was replaced with xylitol. The most appropriate formulation of the developed CCs according to the product’s texture, colour, total phenolic compound (TPC) content, antioxidant activity, viable LAB count during storage, overall acceptability (OA), and emotions (EMs) induced in consumers was selected. It was established that the tested LAB inhibited three pathogens out of the 11 tested, while the blackcurrant by-products inhibited all 11 tested pathogens. The highest OA was shown for the CC prepared with gelatin in addition to 5 g of Rasp and 5 g of Bcur by-products. The Rasp and LUHS135 formulation showed the highest TPC content (147.16 mg 100 g−1 d.m.), antioxidant activity (88.2%), and LAB count after 24 days of storage (6.79 log10 CFU g−1). Finally, it was concluded that Gl, Rasp and Bcur by-products, and L. plantarum LUHS135 multiplied in MP are promising ingredients for preparing CCs in a sustainable manner;the best CC formula consisted of Gl, Rasp by-products, and LUHS135 and showed the highest OA (score 9.52) and induced the highest intensity of the EM ‘happy’ (0.231).

20.
Huanjing Kexue/Environmental Science ; 43(5):2557-2565, 2022.
Article in Chinese | Scopus | ID: covidwho-1835958

ABSTRACT

To reveal the spatiotemporal distribution and risks of plastic additives in Taihu Lake during the COVID-19 pandemic, the occurrences of typical bisphenols, phthalate esters, and benzotriazoles in the surface water of Taihu Lake were investigated. The plastic additives in 19 sites in Taihu Lake were monitored in four seasons, and their potential ecological risks were evaluated. Diethylphthalate (DEP), dimethoxyethyl phthalate (DMEP), benzyl butyl phthalate (BBP), bisphenol A (BPA), and 2-(2H-benzotriazol-2-yl)-4, 6-di-tert-pentylphenol (UV-328) were detected, with detection rates of 100%, 97%, 58%, 98%, and 7%, respectively. During the COVID-19 pandemic, the sharply increasing usage of plastic products did not result in a significant increase in the plastic additives pollution in Taihu Lake. Conversely, the pollution of plastic additives showed a decreasing trend due to reduced human activities. There were significant seasonal differences in the concentrations of plastic additives in Taihu Lake. The average concentrations of plastic additives in spring and summer were 104.7 and 100.3 ng•L-1, respectively, which were higher than those in autumn (30.7 ng•L-1) and winter (29.9 ng•L-1). The plastic additive pollution also showed some differences in spatial distribution. The concentrations of plastic additives near the southwest coast of Taihu Lake were higher than those in other monitoring sites. The presence of plastic additives in Taihu Lake showed low risks to algae with the proportion of 30%. The risks in autumn and winter were higher than those in spring and summer. BPA and UV-328 may have been the main risk factors, which should be of concern. © 2022, Science Press. All right reserved.

SELECTION OF CITATIONS
SEARCH DETAIL